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The temporal dynamics of large-scale structures in a plane turbulent mixing layer
are studied through the development of a low-order dynamical system of ordinary
differential equations (ODEs). This model is derived by projecting Navier–Strokes
equations onto an empirical basis set from the proper orthogonal decomposition
(POD) using a Galerkin method. To obtain this low-dimensional set of equations, a
truncation is performed that only includes the first POD mode for selected stream-
wise/spanwise (k1/k3) modes. The initial truncations are for k3 = 0; however, once
these truncations are evaluated, non-zero spanwise wavenumbers are added. These
truncated systems of equations are then examined in the pseudo-Fourier space in
which they are solved and by reconstructing the velocity field. Two different methods
for closing the mean streamwise velocity are evaluated that show the importance
of introducing, into the low-order dynamical system, a term allowing feedback be-
tween the turbulent and mean flows. The results of the numerical simulations show a
strongly periodic flow indicative of the spanwise vorticity. The simulated flow had the
correct energy distributions in the cross-stream direction. These models also indicated
that the events associated with the centre of the mixing layer lead the temporal
dynamics. For truncations involving both spanwise and streamwise wavenumbers,
the reconstructed velocity field exhibits the main spanwise and streamwise vortical
structures known to exist in this flow. The streamwise aligned vorticity is shown to
connect spanwise vortex tubes.

1. Introduction
Understanding and modelling turbulent flows has become increasingly important as

more advanced applications require knowledge of the finer details of the turbulence.
At the same time it is becoming increasingly evident that large-scale organized
motions present in turbulent flows influence many physical properties such as mixing,
separation, noise, vibrations, heat transfer, drag, lift, etc. Therefore, understanding
the dynamics of large-scale flow organization plays a crucial role in the ability to
understand, predict and ultimately control turbulent flows. In that vein, the method
offered in this study leads to a relatively simple dynamical model, in comparison to
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the full Navier–Stokes equations, which can be used as a tool for understanding the
dynamics of the flow and serve as a test bed for control applications.

The idea of applying a low-order dynamical systems approach of the type discussed
in this communication stems from the desire to simplify the Navier–Stokes equations
to a minimal set of ordinary differential equations (ODEs), able to describe correctly
the essential dynamical behaviour of the flow. The approach uses a small set of
equations modelling some attractor (obtained through a truncation procedure based
on the physics of a given flow) whose solutions have enough similar character to
the solutions of the Navier–Stokes equations to capture the underlying physical
processes. The lower dimension of the new system allows easier comprehension of
the mechanisms in turbulence. The proper orthogonal decomposition (POD), first
introduced in fluid mechanics by Lumley (1967), provides an optimal basis set in
terms of kinetic energy representation; thus utilizing the eigenfunctions of the POD
for the basis set can provide low-dimensional systems with a relatively small number
of equations.

Lorenz (1963) was the first to utilize a low-order dynamical system to study fluid
mechanics. Based on physical approximations, he developed a set of three first-
order differential equations to model the temperature and velocity field dynamics in a
Rayleigh–Bénard convecting layer. Some years later, Ruelle & Takens (1971) made the
theoretical link between low-order dynamical systems and turbulence. They proposed
that, in a certain bounded domain and under specific conditions, a mathematical
object called a strange attractor which corresponds to turbulence might exist for the
Navier–Stokes equations. This work led to many studies using dynamical systems
techniques, especially for closed flow systems. The following is some of the work
using POD–Galerkin models for open flow systems. For a more comprehensive list
see Berkooz, Holmes & Lumley (1993a) or Delville (1995).

A low-order dynamical system based on POD modes was first applied to an
open turbulent system by Aubry et al. (1988). They developed a low-dimensional
set of ODEs that model the near-wall region of a turbulent boundary layer by
using the experimentally determined eigenfunctions of Herzog (1986). Their model
equations (hereafter called the Cornell model) exhibited several dynamical regimes
(periodic, quasi-periodic, intermittent, chaotic) as the Heisenberg control parameter
was varied. When the solutions of their model ODEs are used to reconstruct the
three-dimensional velocity fields in the wall region, they found results consistent with
experimental observations in a turbulent boundary layer, i.e. the burst–sweep cycle.
For a full review of their findings in the context of dynamical systems the reader is
referred to the book by Holmes, Lumley & Berkooz (1996).

Based on the initial work of Aubry et al. (1988), a significant number of other studies
have been undertaken. Aubry, Lumley & Holmes (1990) modelled drag reduction on
the wall region by applying stretching transformations to the eigenfunctions of the
Cornell model. This study suggests that the intermittent events observed in the
original model cannot be considered as an artifact of the closure assumption but
are deeply rooted in the dynamical phenomena of the wall region. Berkooz, Holmes
& Lumley (1991) generalized the wall layer Cornell model to permit uncoupled
evolution of streamwise and cross-stream disturbances. Their main conclusion was
that the intermittent behaviour reported in Aubry et al. (1988) is a direct consequence
of the ODE’s invariant subspaces and symmetries which reflect natural physical
symmetries of the flow. Sanghi & Aubry (1993) investigated the persistence of the
intermittent behaviour observed in the model of Aubry et al. (1988) when streamwise
variations which were not accounted for in an explicit way in the Cornell model are
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now considered. With this higher-order model, the intermittent behaviour persisted,
but with higher additional complexities.

Since the original work of the Cornell group, others have examined the role
of coherent structures in the wall region of a turbulent boundary layer with a
similar approach. To avoid introducing an inhomogeneous pressure term at the
boundary as was done in the Cornell model, Zhou & Sirovich (1992) constructed ‘wall’
eigenfunctions with full channel validity. In order to facilitate comparisons with the
results of the Cornell model, they first adopted the same severe truncation: five modes
with no streamwise variation. This five-mode model equation displayed intermittent,
quasi-periodic, and chaotic behaviour similar to that found by the Cornell group.
When propagating modes (streamwise-dependent modes) are included in the model,
a physically more realistic dynamical behaviour is then obtained. They concluded
that the propagating modes lie more at the heart of the triggering mechanism for the
bursting process than does the idea of pressure fluctuations proposed previously by
Aubry et al. (1988). To get a better understanding of the final stages of transition
in a boundary layer, Rempfer (1995) derived dynamical models for different regions
of the flow, by Galerkin projection of the Navier–Stokes equations onto the POD
eigenfunctions extracted from numerically computed flow fields.

Free shear flows have been studied using the POD–Galerkin type models in both
jets and mixing layers. A low-order dynamical systems model was developed for the
axisymmetric jet by Glauser, Zheng & Doering (1989) and Zheng & Glauser (1991).
The eigenfunctions utilized in these studies have been extracted from two-point ve-
locity measurements in the mixing layer of a high Reynolds number axisymmetric
jet (see Glauser & George 1992 and Glauser 1987). Glauser, Zheng & George (1990)
postulated a spatially evolving dynamical system model for the axisymmetric jet mix-
ing layer. In this model, the mean velocity quantities would be solved simultaneously,
thus resulting in equations of a different form from that of the temporally evolv-
ing case. Rajaee, Karlsson & Sirovich (1994) applied the snapshot form of POD to
measurements obtained in a non-turbulent forced mixing layer. Since their flow was
forced through phase aligning the measurements, they were able to compute the time
dependence of the POD random coefficients directly by projection of the snapshots
on the eigenfunctions and to compare them with the result of the low-dimensional
model. They found good agreement between the model and the direct projection,
serving as justification for the low-dimensional description.

This study is the continuation of the work presented in Delville et al. (1999)
that discussed the experimental measurements and the results from applying the
POD to the plane turbulent mixing layer. Using the POD modes found in that
study, low-dimensional dynamical systems models are developed in this communica-
tion by utilizing a Galerkin projection of the POD eigenfunctions on the Navier–
Stokes equations. Due to the orthogonality condition of the eigenfunctions, this
yields an ODE for each streamwise/spanwise wavenumber pair retained in a given
truncation. The results of two truncations are presented here. The first involves a
very severe truncation utilizing one POD mode and seven streamwise wavenum-
bers and the second a less severe truncation based on one POD mode but several
streamwise/spanwise wavenumber combinations. Both systems of modelled equa-
tions for the POD expansion coefficients are solved with and without feedback
between the modelled POD expansion coefficients and the mean flow (feedback in-
volves a cubic term similar to the Aubry et al. (1988) work). From the modelled
time-dependent POD expansion coefficients, and the measured POD eigenfunctions,
the low-dimensional velocity field is constructed and used to study the temporal
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dynamics of the mixing layer and comparisons made to experiment. We find that for
both truncations, feedback between the modelled POD expansion coefficients and the
mean flow is key to obtaining the proper range of amplitude of the modelled POD
expansion coefficients. The very severe truncation results (which do not include span-
wise wavenumbers) are not able to mimic the proper spectral distribution obtained
from experiment but when spanwise wavenumbers are added, as in the less severe
truncation, very good comparisons between experiment and model result exist.

2. Application of POD to the plane turbulent mixing layer
A brief discussion of the application of POD to the plane turbulent mixing layer

follows. For more details the reader is referred to Part 1 of this work (Delville et al.
1999).

Lumley (1967) suggested that the coherent structure should be the deterministic
structure ψi(x, t) having the largest mean-square projection on the velocity field ui(x, t).
Maximizing the mean-square projection via the calculus of variations leads to the
following integral eigenvalue problem:∫

T

∫
D
Rij(x, x

′, t, t′)ψj(x′, t′) dx′dt′ = λψi(x, t). (2.1)

The symmetric kernel of this Fredholm integral equation is the velocity cross-
correlation tensor Rij defined by

Rij(x, x
′, t, t′) = 〈ui(x, t)uj(x′, t′)〉, (2.2)

where the angle brackets denote the appropriate average for the problem under
consideration (see § 3.1 for a discussion on the averaging method performed in the
mixing layer).

If the vector field is statistically homogeneous or periodic in one or more spatial
directions or stationary in time, the eigenfunctions become Fourier modes (Lumley
1970; George 1988), so that the harmonic decomposition can be used in these
directions. In the mixing layer under study, the spanwise direction is homogeneous.
As detailed in Delville et al. (1999), time is mapped to the streamwise direction
through Taylor’s Hypothesis; thus this direction is also treated as homogeneous.
With these conditions, the eigenvalue problem (2.1) becomes∫

D
Ψij(x2, x

′
2; k1, k3)Φ

(n)
j (x′2; k1, k3) dx′2 = λ(n)(k1, k3)Φ

(n)
i (x2; k1, k3), (2.3)

where Ψij(x2, x
′
2; k1, k3) is the cross-spectral tensor, defined as the streamwise and

spanwise Fourier transform of the cross-correlation tensor. The above equation is
solved to extract the eigenfunctions used in the models developed in the next section
where the kernel is supplied via experiment.

As pointed out in Lumley (1967), the properties of the integral equation (2.3) are
given by the Hilbert–Schmidt theory. One interesting property is that the eigenfunc-
tions form a complete orthonormal set, which means that the Fourier transform in
the x1- and x3-directions of the fluctuating field can be reconstructed in the following
way:

ûi(k1, k3; x2, t) = (L1L3)
1/2

NPOD∑
n=1

a
(n)
k1 ,k3

(t)Φ(n)
i (x2; k1, k3). (2.4)

In the above equation, a(n)
k1 ,k3

(t) are the temporal POD expansion coefficients. This
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relationship can be transformed back into physical space by the two-dimensional
Fourier transform defined by

ui(x1, x2, x3, t) =

∫ +∞

−∞

∫ +∞

−∞
ûi(k1, k3; x2, t) exp(+2πi(k1x1 + k3x3)) dk1 dk3. (2.5)

In (2.4), L1 and L3 are the spatial extent of the domain D in the x1- and x3-
directions, respectively, and NPOD is the number of POD modes.

The POD expansion coefficients a(n)
k1 ,k3

(t) are determined by

a
(n)
k1 ,k3

(t) =
1

(L1L3)1/2

∫
D
ûi(k1, k3; x2, t)Φ

(n)∗
i (x2; k1, k3) dx2. (2.6)

The dynamical systems that are developed in the following sections are low-order
models from which the temporal evolution of the POD expansion coefficients a(n)

k1 ,k3

in (2.4) can be extracted. Such models are needed because the integral (2.6) cannot
be solved unless the velocity field is measured simultaneously over the whole decom-
position domain. In our experiments such data were not available. Experimentally,
the full field measurements are extremely difficult to obtain although the recent work
of Bonnet et al. (1994) and Citriniti (1996) have shown that it is becoming more
feasible.

In the context of our deterministic dynamical models, the temporal coefficients now
become deterministic functions of time and are considered as ‘building blocks’ for
studying the temporal evolution of the large-scale structures.

3. Temporal dynamical equations
The derivations of the equations for the dynamical models are presented in this

section. The method used here is similar to that of Aubry et al. (1988) and Glauser
et al. (1989). This methodology has been documented in a recent monograph by
Holmes et al. (1996). In our work, two sets of equations are derived with their
differences stemming from the closure method for the mean streamwise velocity.
In each case, the mean velocity is calculated from a Boussinesq approximation
(see (3.3)). The first method (§ 3.2.1) yields a mean velocity which is calculated a
priori and is held constant throughout the time integrations. In the second method
(§ 3.2.2), a cutoff wavenumber is chosen and the contribution to the mean velocity
from wavenumbers lower than this wavenumber are assumed to be steady, while
the contribution from wavenumbers greater than the cutoff vary with time. The
difference between these two methods will be presented below. The importance of a
non-zero contribution to a time-dependent mean velocity has been documented in
Holmes et al. (1996). Such a mechanism is critical in this study to obtain modelled
POD expansion coefficients with the proper amplitude. The results in § 6, where the
linear stability of the trivial solution is discussed, also show the need for such a
mechanism.

3.1. Momentum equations

In the same manner as detailed in Berkooz, Holmes & Lumley (1993b) and Aubry et
al. (1988), the equations will be derived by performing a spatial average in the x1-
and x3-directions denoted by 〈•〉:

〈•〉 =
1

L1L3

∫
(•) dx1dx3. (3.1)
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To derive the temporal dynamical equations, the first step is to perform a Reynolds
decomposition of the Navier–Stokes equations (ui = 〈ui〉 + u′i where 〈ui〉 = Ui). For
an incompressible fluid, without body forces, the following equation is obtained:

∂u′i
∂t

+ u′j
∂u′i
∂xj
−
〈
u′j
∂u′i
∂xj

〉
+ u′2

∂U1

∂x2

δi1 +U1

∂u′i
∂x1

= −1

ρ

∂p′

∂xi
+ ν

∂2u′i
∂xj∂xj

. (3.2)

The following two assumptions have been made in deducing (3.2) from the Navier–
Stokes equations: (a) U3 ≈ 0, (b) U2 ≈ 0, which corresponds to a thin mixing layer
assumption. The first assumption is explicitly forced by the symmetries applied to
the experimental data. The second assumption has been examined and it was shown
that the terms involving U2 were small in comparison to the other terms kept in the
model. Note that the mean velocity can depend on time so that U1 = U1(x2, t).

It is important at this point to briefly discuss a potential inconsistency in the
way equation (3.2) is derived and its actual implementation using the empirical
eigenfunctions. The experimental data used to obtain the eigenfunctions were obtained
from time averaging as articulated in § 3 of Delville et al. (1999). Thus an overlap
of the spatial average and the temporal average is possible. This problem has been
discussed by others such as Aubry et al. (1988) and more recently Rempfer (2000).
In the limit of an infinite-dimensional model of a flow that is homogeneous in the
spatial coordinates and stationary in time the problem will disappear.

3.2. Eddy viscosity representation

In this section a relationship for the mean streamwise velocity given in (3.2) will
be presented. This relation is necessary because, in our severely truncated system,
the measured mean velocity profile will be incorrect. Since there is no direct way to
represent the mean velocity in terms of the POD modes an eddy viscosity relationship
will be used to balance the mean streamwise velocity with the Reynolds stress
term, which can easily be written in terms of POD modes. Two different ways of
representing Reynolds stresses in terms of the POD modes will be discussed thus
introducing two different mean velocity closures (see § 3.2.1 and § 3.2.2). Assuming
that the Reynolds stresses act like the viscous stresses, Boussinesq (1877) developed
a relationship where the Reynolds stresses are directly proportional to the velocity
gradient. This relationship can be written for the mean streamwise velocity as follows:

U1(x2) = − 1

νe

∫ x2

0

u′1u′2 dx′2 +U1(0), (3.3)

where the Reynolds stresses can be expressed in terms of the POD modes as

u′1u′2 =

NPOD∑
i=1

∫ ∫ ∞
−∞
λ

(i)
k1 ,k3

Φ
(i)
1,k1 ,k3

Φ
(i)∗
2,k1 ,k3

dk1 dk3. (3.4)

In (3.3) νe is determined from the free shear layer model as formulated by Prandtl–
Reichardt: νe = Kδw(Ua − Ub) where Ua − Ub represents the velocity difference,
δw is the vorticity thickness and the constant K is 0.01 for the mixing layer. This
approximation forces a constant eddy viscosity across the layer. Although νe is not
truly constant across the mixing layer, the value from this relationship was found to be
approximately equal to the integral value of νe calculated from (3.3) using experimental
data (see Ukeiley (1995)). In (3.3), U1(0) is set to be equal to Um = (Ua + Ub)/2 to
preserve the convection velocity of the experimental system in our model. In later
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sections it will be shown that this term is important for the spectral behaviour of our
low-order system.

Before deriving the relationships used in this study, the concept of the mean velocity
modulation by the turbulence should be introduced. It is well known that the mean
gradient contributes to the turbulence through the production process. However,
many researchers in turbulence also feel that turbulent velocities must affect the mean
velocities in some way. Wick, Glauser & Ukeiley (1994) studied the effect of the
presence of a coherent structure on the mean streamwise velocity profile by applying
pseudo flow visualization on a turbulent axisymmetric jet mixing layer. They found
that the presence or absence of a structure alters the mean velocity profile. Therefore,
the present study seeks to incorporate feedback between the turbulence and the mean.
Holmes et al. (1996) have already discussed the value of including feedback from the
turbulence to the mean velocity. They stressed that in the dynamical model of Aubry
et al. (1988) without any feedback the system grew unbounded. This result is similar
to the one obtained from the model presented in § 7.

3.2.1. No-feedback relationship

In this approach, a steady mean velocity is calculated and its numerical value is
used in (3.2). This value is calculated from the only modes kept in the truncation as
follows:

U1(x2) = − 1

νe

∫ x2

0

[
NPOD∑
i=1

∫ k1T

−k1T

∫ k3T

−k3T

λ
(i)
k1 ,k3

Φ
(i)
1,k1 ,k3

Φ
(i)∗
2,k1 ,k3

dk1dk3

]
dx′2 +U1(0)

≡ U1F (x2), (3.5)

where k1T and k3T represent the largest streamwise and spanwise wavenumbers kept
in the truncation and NPOD is set to one. Even though there is no mechanism for
feedback between the turbulent and mean velocity, the amplitude of the mean velocity
should be appropriately scaled for the severely truncated systems studied here. The
system of equations is driven by the production term and, in order to prevent the
unbounded growth, this term must be of the correct order.

3.2.2. Filter relationship

In this approach, the streamwise velocity (3.3) is split into a steady and time-
dependent part by choosing cutoff wavenumbers in both directions k1 and k3. These
cutoff wavenumbers (k1C and k3C) act as a filter point. The contribution to the mean
streamwise velocity from wavenumbers less than the cutoff value in a given direction
is considered to be the steady part of the mean. The contribution from wavenumbers
greater than the cutoff values correspond to the unsteady part of the mean and acts to
provides feedback between the turbulence and mean flow. The ensemble of the modes
(k1, k3) less than the cutoff values is defined by EC6 = {k1, k3; |k1| 6 k1C and |k3| 6 k3C}
and the set EC> is formed of the wavenumbers kept in the truncation but with
wavenumbers greater than the cutoff values EC> = {k1, k3; k1T > |k1| > k1C and k3T >
|k3| > k3C}. This technique of spectral decomposition is applied to the mean velocity
profile to yield

U1(x2, t) = U1F (x2) +U1 uns(x2, t). (3.6)

U1F (x2) is estimated using (3.5) with the modes (k1, k3) ∈ EC6 and U1 uns(x2, t) can be
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written as

U1 uns(x2, t) = − 1

(L1L3)νe

×
∫ x2

0

[
NPOD∑
i=1

∫ ∫
(k1 ,k3)∈EC>

a
(i)
k1 ,k3

(t)a(i)∗
k1 ,k3

(t)Φ(i)
1,k1 ,k3

(x2)Φ
(i)∗
2,k1 ,k3

(x2) dk1 dk3

]
dx′2,

(3.7)

by taking into account (2.4).
Substituting (3.6) into (3.2) yields

∂u′i
∂t

+ u′j
∂u′i
∂xj
−
〈
u′j
∂u′i
∂xj

〉
+ u′2

∂U1 uns

∂x2

δi1 +U1 uns

∂u′i
∂x1

+ u′2
∂U1F

∂x2

δi1 +U1F

∂u′i
∂x1

= −1

ρ

∂p′

∂xi
+ ν

∂2u′i
∂xj∂xj

. (3.8)

In this equation, a fixed portion of the mean streamwise velocity forces a con-
stant (non-time-dependent) production term combined with a relationship allowing
feedback between the turbulent and mean velocities at higher wavenumbers. In the
limit as k1C and k3C go to zero, U1F ≡ 0 and the entire mean velocity is unsteady.
This limiting case is examined both in Ukeiley (1995) and in terms of linear stability
analysis in § 6.

3.3. Fourier transform and Galerkin projection

Before the Galerkin projection is performed two steps must be taken. The first step
is to take the two-dimensional Fourier transform of (3.8) and the second one is to
expand the Fourier coefficients of the velocity in terms of POD modes using (2.4).

After the two previous operations were performed on the manipulated Navier–
Stokes equations, a Galerkin projection was applied. As defined in Aubry et al.
(1988), this projection is represented by the following inner product:

(N,Φ(l)) =

∫
D
Ni,k1 ,k3

(t, x2)Φ
(l)∗
i,k1 ,k3

(x2) dx2 = 0, l = 1, . . . , Ngal , (3.9)

where Ni,k1 ,k3
(t, x2) represents the Fourier transform of the Navier–Stokes equations

and Ngal the number of Galerkin modes kept in the dynamical system. To obtain the
final equations, the orthogonality relationship of the eigenfunctions was applied:∫

D
Φ

(n)
i,k1 ,k3

Φ
(l)∗
i,k1 ,k3

dx2 = δnl . (3.10)

After some analytical manipulations, (3.8) can be rewritten in a general form as

da(n)
k1 ,k3

dt
(t) =

Ngal∑
m=1

Λ
(m)
k1 ,k3

a
(m)
k1 ,k3

(t) +

Ngal∑
p,q=1

∑
k′1 ,k′3

Q
(p)(q)
k′1 ,k′3 ,k1 ,k3

a
(p)
k′1 ,k′3

(t) a(q)
k1−k′1 ,k3−k′3 (t)

+

Ngal∑
p,q,r=1

∑
k′1 ,k′3

C
(p)(q)(r)
k′1 ,k′3 ,k1 ,k3

a
(p)
k′1 ,k′3

(t)a(q)∗
k′1 ,k′3

(t)a(r)
k1 ,k3

(t)

−1

ρ

∫
D
∂p̂k1 ,k3

∂xi
Φ

(n)∗
i,k1 ,k3

(x2) dx2. (3.11)



Large-scale structures in a mixing layer. Part 2. 75

Since the eigenfunctions are divergence free and the streamwise and spanwise
directions are assumed to be homogeneous, the pressure term in (3.11) can be written
as ∫

∂D
p̂k1 ,k3

(x2)Φ
(n)∗
k1 ,k3
· n dS = [p̂k1 ,k3

(x2)Φ
(n)∗
2,k1 ,k3

(x2)]
L2−L2
, (3.12)

where ∂D is the boundary domain and n the outer normal on ∂D. It can be argued
that the eigenfunctions go to zero at the outer region of the shear layer. Under these
conditions one can write Φ(n)

2,k1 ,k3
(x2) = 0 at x2 = −L2 and x2 = L2 so that the pressure

term is eliminated. Note that this is different from the near-wall study of Aubry et al.
(1988) where the effect of the pressure term needed to be modelled.

In the following two subsections, the dynamical equations will be derived for the
two different mean velocity closures introduced in § 3.2.1 and 3.2.2.

3.4. No-feedback relationship

For the no-feedback relationship, the expression (3.11) can be written in a simplified
form as follows:

da(n)
k1 ,k3

dt
(t) =

Ngal∑
m=1

(Λ1(m)
k1 ,k3

+ Λ
2(m)
k1 ,k3

)a(m)
k1 ,k3

(t) +

Ngal∑
p,q=1

∑
k′1 ,k′3

Q
(p)(q)
k′1 ,k′3 ,k1 ,k3

a
(p)
k′1 ,k′3

(t)a(q)
k1−k′1 ,k3−k′3 (t), (3.13)

where the coefficients Λ1(m)
k1 ,k3

, Λ2(m)
k1 ,k3

and Q
(p)(q)
k′1 ,k′3 ,k1 ,k3

are calculated from the POD eigen-

functions. The exact form of these coefficients is given in Appendix A.
The first two terms on the right-hand side of (3.13) are linear. The first, Λ1(m)

k1 ,k3
,

is a direct result of the viscous diffusion term in (3.8) (ν∂2u′i/(∂xj∂xj)). The second

term Λ
2(m)
k1 ,k3

results from the production and convection terms (the first part comes

from u′2(∂U1/∂x2)δi1 and the second one comes from the term U1∂u
′
i/∂x1 of (3.8) and

contains the mean velocity calculated from (3.5)). The term Q
(p)(q)
k′1 ,k′3 ,k1 ,k3

is quadratic; it

represents the fluctuation interactions and expresses the transfer of energy between
the Fourier and POD modes in the dynamical system (terms u′j∂u′i/∂xj − 〈u′j∂u′i/∂xj〉
of (3.8)).

3.5. Filter relationship

In this approach expression (3.11) can be written as follows:

da(n)
k1 ,k3

dt
(t) =

Ngal∑
m=1

(
Λ

1(m)
k1 ,k3

+ Λ
2(m)
k1 ,k3

)
a

(m)
k1 ,k3

(t)

+

Ngal∑
p,q=1

∑
k′1 ,k′3

Q
(p)(q)
k′1 ,k′3 ,k1 ,k3

a
(p)
k′1 ,k′3

(t)a(q)
k1−k′1 ,k3−k′3 (t)

+

Ngal∑
p,q,r=1

∑
(k′1 ,k′3)∈EC>

C
(p)(q)(r)
k′1 ,k′3 ,k1 ,k3

a
(p)
k′1 ,k′3

(t)a(q)∗
k′1 ,k′3

(t)a(r)
k1 ,k3

(t). (3.14)

In this closure assumption, the linear term Λ
1(m)
k1 ,k3

is the same as the one in the

no-feedback case (§A.1). The second linear term Λ
2(m)
k1 ,k3

is similar to the one in (3.13)

except now Λ
2(m)
k1 ,k3

uses the filtered mean streamwise velocity U1F calculated using

(3.5) with the modes (k1, k3) ∈ EC6. The quadratic term Q
(p)(q)
k′1 ,k′3 ,k1 ,k3

is the same as
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in (3.13). The last term C
(p)(q)(r)
k′1 ,k′3 ,k1 ,k3

is cubic and is a result of the modelling of the

mean velocity. One part comes from the term u′2(∂U1 uns/∂x2)δi1 and the other one
comes from U1 uns∂u

′
i/∂x1 in (3.8) where U1 uns is calculated from (3.7). This term

represents the interaction between the mean velocity and the turbulent fluctuations
with the summations performed only over values greater than the filter setting and
not the whole truncated domain. The cubic coefficients are shown in the Appendix,
§A.2.

4. Turbulent viscosity model
Due to the rapid convergence of the POD modes (49% of the turbulent kinetic

energy is contained in the first mode, Delville et al. (1999)), only the first POD mode
will be used in the truncations. Hence, the superscript denoting POD mode will be
dropped and the first POD mode can be assumed.

To further reduce the degrees of freedom of the dynamical system, the number of
streamwise/spanwise wavenumber pairs kept in the model will be truncated as well.
As a result of the POD/wavenumber truncation there is a need to account for the
energy transfer between the modes kept and the truncated modes. In this study a
Heisenberg spectral model (Hinze 1975) similar to that used by Aubry et al. (1988)
and Glauser et al. (1989) is applied. In this approach, it is assumed that the small
scales (neglected modes) remove energy from the larger ones (the modes kept) via
the global viscous action of a kinematic turbulence viscosity νT . See Appendix B for
details of the method to estimate νT .

On introducing the turbulent viscosity νT into the dynamical equations (3.11), they
become

dak1 ,k3

dt
(t) =

[(
1 + α

νT

ν

)
Λ1
k1 ,k3

+ Λ2
k1 ,k3

]
ak1 ,k3

(t) +
∑
k′1 ,k′3

Qk′1 ,k′3 ,k1 ,k3
ak′1 ,k′3 (t)ak1−k′1 ,k3−k′3 (t)

+
∑
k′1 ,k′3

Ck′1 ,k′3 ,k1 ,k3
|ak′1 ,k′3 (t)|2ak1 ,k3

(t), (4.1)

where Ck′1 ,k′3 ,k1 ,k3
is zero for the no-feedback case. The coefficient α controls the drain

of energy to the neglected modes and, in the context of dynamical systems, can be
considered a bifurcation parameter.

5. General properties of the ODEs and solutions
This section details some of the properties of the differential equations along with

the properties of the numerical integrations.

5.1. Symmetry properties

To solve the equations derived in the previous section it will be necessary to map
some quantities to negative wavenumbers using symmetry properties of the flow field.
For the eigenfunctions the applied symmetries are based on the relationships for the
cross-spectral tensor as shown in Cordier (1996). The following symmetries are used
for the eigenfunctions:

Φ1,−k1 ,−k3
= Φ∗1,k1 ,k3

, Φ2,−k1 ,−k3
= Φ∗2,k1 ,k3

, Φ3,−k1 ,−k3
= Φ∗3,k1 ,k3

,

Φ1,−k1 ,k3
= Φ∗1,k1 ,k3

, Φ2,−k1 ,k3
= Φ∗2,k1 ,k3

, Φ3,−k1 ,k3
= −Φ∗3,k1 ,k3

,

Φ1,k1 ,−k3
= Φ1,k1 ,k3

, Φ2,k1 ,−k3
= Φ2,k1 ,k3

, Φ3,k1 ,−k3
= −Φ3,k1 ,k3

.

 (5.1)
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Figure 1. Solution domain.

The expansion coefficients ak1 ,k3
(t) are instantaneous quantities, and there is no

explicit reason why they should be forced to satisfy the above symmetries at all times.
However, because the velocity is real, certain constraints can be imposed on these
coefficients. Utilizing the symmetries on the eigenfunctions it can be shown that

ak1 ,k3
(t) = a∗−k1 ,−k3

(t). (5.2)

5.2. Solution domain

For truncations involving several k1 values with k3 = 0, only positive values of k1 are
solved; the others are extracted from the application of the above symmetry to the a.
When truncations involve wavenumbers of k3 6= 0 the solution expands dramatically.
In these cases ±k1 is solved along with +k3. The solution domain is graphically
depicted in figure 1.

As the only symmetry involved relates the diagonal quadrants, the choice of solution
domain is rather arbitrary. The solution domain could have easily been the inverse:
±k3 is solved along with +k1. Checking this showed the domain solution chosen did
not affect the solutions.

5.3. The zero-wavenumber coefficient

The zero-wavenumber mode (k1 = 0, k3 = 0) needs to be considered independently
in the truncation. From (5.2), the coefficient a0,0 is real and has a temporal evolution
which is described by

da0,0

dt
=
(

1 + α
νT

ν

)
Λ1

0,0a0,0, (5.3)

where the coefficient Λ1
0,0 is found numerically to be strictly negative.

Starting from (4.1), equation (5.3) can be obtained after the introduction of the
following properties (see Appendix A for the expressions for the dynamical system
coefficients):

(a) The factor (1− δk1 ,0δk3 ,0) in front of the quadratic term in (A 3) implies that the
contribution of this term is zero for the (k1 = 0, k3 = 0) mode.
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(b) The cubic term in (A 3) is either equal to zero (for the no-feedback case) or is
composed of two terms. In front of the first term, there is a factor (2πik1), making this
term equal to zero for k1 = 0. In the second term the eigenfunction Φ2,k1 ,k3

appears
causing it to be zero.

The continuity equation in the spectral domain can be written as

(2πik1)Φ1,k1 ,k3
(x2) +

∂

∂x2

Φ2,k1 ,k3
(x2) + (2πik3)Φ3,k1 ,k3

(x2) = 0. (5.4)

For k1 = k3 = 0, this equation becomes

∂

∂x2

Φ2,k1 ,k3
(x2) = 0,

and the eigenfunction Φ2,k1 ,k3
(x2) is constant. We remind the reader that in § 3.3, we

assumed that limx2→±∞Φ2,k1 ,k3
(x2) = 0; the consequence is that Φ2,k1=0,k3=0(x2) = 0.

Finally, the contribution of the cubic term in the feedback case is also equal to
zero.

Equation (5.3) implies that the amplitude of the mode a0,0(t) decreases exponentially
to zero with a time constant given by

τ0,0 = − 1

(1 + ανT/ν)Λ
1
0,0

.

Therefore, this mode can only influence the dynamical evolution of the system for
a short transient. (However, we have to keep in mind that for the very low values
of the control parameter α, the time constant τ0,0 may be very high.) From now on,
the amplitude of the coefficient a0,0(t) will be assumed to be zero, and the mode
(k1 = 0, k3 = 0) will not be retained in the truncation.

5.4. Initial conditions

The initial conditions for the system of equations are based on the magnitude of the
eigenvalues. Essentially, since a goes like (λ)1/2 the initial values for the coefficients
will be determined by the following equation:

Re
(
a

(1)
k1 ,k3

(t = 0)
)

= Im
(
a

(1)
k1 ,k3

(t = 0)
)

= ( 1
2
λ

(1)
k1 ,k3

)1/2 (5.5)

where Re and Im denote the real and imaginary part of a complex number respec-
tively. Using this value for the initial conditions the simulations should start with
approximately the correct magnitude. In the discussion of the simulations this will
help to serve as a criterion to evaluate the results.

The effects of varying the initial conditions have been studied and shown to have
little effect on the results. A change in amplitude of the initial conditions, by as much
as an order of magnitude, only affected the amount of time before the results settled
into the same behaviour.

5.5. Numerics

To investigate the temporal evolution of the coefficients, a Runge–Kutta technique
was utilized. The particular Runge–Kutta method used was a fifth/sixth-order Verner
method from the IMSL numerical libraries. This particular method was chosen
for ease of application along with its ability to multi-step between prescribed time
steps. Several other Runge–Kutta methods were tried and shown to give the same
quantitative results.
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A minimum time step of 8 × 10−5 s was chosen. This time step was used in order
to minimize the intermittent stepping. Since for the truncations studied here one
should not see frequencies greater than 1000 Hz, the selected step size allows adequate
resolution of any waves observed.

Since the Runge–Kutta method used can only handle real-valued numbers, the
coefficients are split into their real and imaginary parts,

ak1 ,k3
(t) = ark1 ,k3

(t) + iaik1 ,k3
(t). (5.6)

The number of degrees of freedom for the system then becomes twice the number
of modes included in the system. Computationally this involved twice the number of
equations; however, in the function evaluation for the Runge–Kutta method the real
and imaginary parts were combined and complex manipulations were used.

For the three-dimensional simulations the spanwise and streamwise domains where
L3 = 0.27 m and L1 = 0.345 m respectively. The spanwise domain is the physical
domain of the experiments. It was shown by Delville et al. (1999) that the spanwise
correlations had decayed within this window and in fact the spanwise spatial window
is more than 3 integral scales in length. The streamwise domain contains at least two
structures since the vorticity thickness is 28 mm and a typical structure has an aspect
ratio 4 or 5.

The wavenumbers included in the system are defined as an integer times the
experimental step δk1 exp = ∆f/Uc = 0.29 m−1 and δk3 exp = ∆kz = 3.70 m−1 where
∆f and ∆kz are, respectively, the minimal step size in frequency f and spanwise
wavenumber kz dictated by the experimental arrangement. From here on, only the
integer value will be used and the appropriate δ will be assumed.

Computations were performed on an IBM RS6000 550 work station using double-
precision arithmetic.

6. Linear stability analysis of the trivial solution
In this section, a linear stability analysis of the trivial solution for the general

dynamical system (4.1) is performed. This analysis focuses on the influence of the
mean streamwise velocity modelling and its effect on the dynamical behaviour of
the system. Of special interest is the role of the different terms appearing in (3.13) for
the no-feedback relationship and in (3.14) for the filter relationship.

The turbulent viscosity model introduced in Appendix B (see equation (B 5)) is a
function of the specific truncation used in each low-dimensional system investigated.
Hence, to give a general sense to the analysis, the viscous term ανT/ν in (4.1) was
replaced for the analysis in this section by the term 100β, which is independent of
the truncation under study. It follows from the definition of the turbulent viscosity,
νT , that the coefficient 1 + 100β is positive. Note that β = −0.01 corresponds to an
inviscid configuration (Euler’s equations).

6.1. Analysis method

Linearizing (4.1) around the trivial solution yields the following equations:

drk1 ,k3

dt
= [(1 + 100β)Λ1,r

k1 ,k3
+ Λ

2,r
k1 ,k3

]rk1 ,k3
,

dθk1 ,k3

dt
= [(1 + 100β)Λ1,i

k1 ,k3
+ Λ

2,i
k1 ,k3

],

 (6.1)
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Figure 2. Marginal stability surface. No-feedback relationship.

where the complex number ak1 ,k3
is written in its polar form as rk1 ,k3

eiθk1 ,k3 , and Λ
1,r
k1 ,k3

,

Λ
2,r
k1 ,k3

, and Λ
1,i
k1 ,k3

, Λ2,i
k1 ,k3

are the real and imaginary parts of the terms Λ1
k1 ,k3

, Λ2
k1 ,k3

,
respectively.

The linear stability of the trivial solution is directly determined by the sign of the
linear growth rate defined as

σk1 ,k3
= Re(Λk1 ,k3

) = (1 + 100β)Λ1,r
k1 ,k3

+ Λ
2,r
k1 ,k3

. (6.2)

Note the following:
(i) if σk1 ,k3

< 0, every harmonic disturbance is exponentially damped and the mode
(k1, k3) is considered stable;

(ii) if σk1 ,k3
> 0, every harmonic disturbance is exponentially amplified and the

mode (k1, k3) is considered unstable;
(iii) if σk1 ,k3

= 0, the mode (k1, k3) is considered marginally stable.
Regardless of the mode (k1, k3) under analysis, it has been found numerically that

Re(Λ1
k1 ,k3

) < 0, based on the assumption that when Re(Λ2
k1 ,k3

) has negative values the
linear growth rate σk1 ,k3

remains negative for all values of the control parameter β. On
the other hand, in the case where Re(Λ2

k1 ,k3
) is positive, a critical value of β (βck1 ,k3

) can
be found from the following relationship such that the linear growth rate becomes
equal to zero:

βck1 ,k3
= − 1

100

(
Re(Λ2

k1 ,k3
)

Re(Λ1
k1 ,k3

)
+ 1

)
. (6.3)

Thus for β > βck1 ,k3
the mode (k1, k3) is stable, for β < βck1 ,k3

the mode (k1, k3) is unstable
and for β = βck1 ,k3

the mode (k1, k3) is marginally stable.

6.2. No-feedback relationship

For the no-feedback relationship, a steady mean velocity profile U1(x2) is used to
close the system of equations (see § 3.2.1).

6.2.1. Linear growth rate

Figure 2 displays the surface of marginal stability determined using (6.3). Several
observations can be made:

(a) when β is sufficiently high, all the modes (and thus the trivial solution) are
stable;

(b) as β decreases, the marginal stability surface is intersected by the β-plane at a
particular mode (k1, k3), which is considered to be the most unstable mode;
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Figure 3. Linear growth rate of the two-dimensional modes (k3 = 0) for several values of the
control parameter β. No-feedback relationship.
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Figure 4. Linear growth rate of the inviscid turbulent plane mixing layer.
No-feedback relationship.

(c) as β decreases further, there is an ensemble of modes (k1, k3) that are unstable;
(d) the most unstable modes are found for k3 = 0 (two-dimensional modes), which

is in agreement with the Squire theorem.
Further study in this section will be restricted to k3 = 0 since it contains the most

unstable mode. The evolution of the linear growth rate versus the non-dimensional
streamwise wavenumber k1/δk1 exp is plotted in figure 3 for different values of the
control parameter β. When β = 14, the linear growth rate is negative for all values of
k1. This implies that all of the modes are stable and hence the trivial solution is also
stable. As β decreases the curve translates to larger ordinant values. The streamwise
wavenumber k1/δk1 exp ' 20 is the first mode to cross the horizontal axis of marginal
stability; thus it is the most unstable mode and becomes unstable at β ' 13.2.

Figure 4 compares the linear growth rate obtained for an inviscid mixing layer by
Michalke (1964) to that obtained using the simplified dynamical system (β = −0.01)
presented in this work. An excellent agreement between the two curves can be observed
for both the most linearly unstable mode kmax1 and the value of its linear growth rate.
Unlike the study of Poje & Lumley (1995) where the maximum energy growth modes
could be compared with the empirical eigenfunctions given by POD, the stability
modes obtained by Michalke cannot be directly compared to the eigenfunctions
of the current study. However, the eigenfunctions obtained by POD when only the
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streamwise component of the velocity is retained exhibits the same types of symmetries
as those determined by Michalke, i.e. the real part is even while the imaginary part
is odd. Note that this result is consistent with the study of Rempfer & Fasel (1994)
where they found in the case of a flat-plate boundary layer that the Karhunen–Loéve
eigenfunctions of the POD and the Orr–Sommerfeld eigenfunctions of linear stability
theory were almost identical when correctly normalized. The similarity between the
two results is quite remarkable considering Michalke (1964) addressed the stability
of the velocity profile while here the dynamical system is obtained via projection
of the Navier–Stokes equations on the POD eigenfunctions which are based on the
two-point correlation tensor. This point confirms that the first POD mode is not only
pertinent in terms of energy content but also in terms of describing linear stability.
These results suggest that a low-order dynamical system based only on the first POD
mode could be used to clarify the flow mechanisms responsible for the dynamics of
the large-scale structures.

6.2.2. Spectral behaviour

Applying (6.1), the frequency of a given two-dimensional mode (k1, 0) can be
estimated in a first approximation†, as

fk1 ,0 =
Im(Λk1 ,0)

2π
=

Im
[
(1 + 100β)Λ1

k1 ,0
+ Λ2

k1 ,0

]
2π

. (6.4)

This equation shows how fk1 ,0 is explicitly a function of the control parameter
β. However, the coefficient Im(Λ1

k1 ,0
) was found numerically to be nine orders of

magnitude smaller than Im(Λ2
k1 ,0

). Hence, 6.4 could be reduced to fk1 ,0 = Im(Λ2
k1 ,0

)/2π
without seriously altering the solution. Figure 5 represents the evolution of this
frequency function with respect to k1,0.

Michalke (1964) demonstrated that when the mean velocity profile is antisymmetric
with respect to y = 0, the phase velocity of the instabilities is independent of k1 and
equal to U1(0). In a fixed frame of reference, these instabilities are convected by the
flow and move at frequency of Umk1. Figure 5 shows that the frequency determined
with the current dynamical system coincides with those estimated by Michalke. This
result can be viewed as a posteriori justification of using U1(0) = Um as the mean
velocity profile in (3.3).

† The behaviour of the full dynamical system is not exactly this because, through the intermediary
of the quadratic terms, the mode (k1, 0) is influenced by the other modes.
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Figure 6. Linear growth rate of the two-dimensional modes (k3 = 0) for several values of the
control parameter β. (For β = −0.01 no viscosity.) Feedback relationship.

Lastly, in figure 5 the evolution of Uck1 is represented versus k1 where Uc is the
flow convection velocity determined in Delville et al. (1999). When compared to
Im(Λ1

k1 ,0
)/2π, fk1 ,0 is found to be better described by Uck1 than by Umk1. This result is

particularly true in the interval [50, 80] where Uc exhibits a constant value equal to
0.8Um (Delville et al. 1999).

6.3. Feedback relationship, k1C = k3C = 0

For the feedback relationship, the mean velocity profile is decomposed into a steady
part U1F (x2) and an unsteady part U1 uns(x2, t) (see § 3.2.2). When k1C = k3C = 0, the
steady part of the mean velocity profile reduces to U1(0) = Um, which implies that the
linear term Λ2

k1 ,k3
(defined in the Appendix, §A.1) may be simplified to the following:

Λ2
k1 ,k3

= −(2πik1)Um. (6.5)

Note that k1C = k3C = 0 constitutes the limiting case of the feedback relationship
where all the modes retained in the truncation contribute to the mean velocity in a
time-dependent fashion.

6.3.1. Linear growth rate

Since the linear term Λ2
k1 ,k3

is purely imaginary and given that Re(Λ1
k1 ,k3

) < 0 for
all (k1, k3), it was found that the trivial solution is stable. Figure 6 presents the linear
growth rate for several values of the control parameter β for the most unstable
modes (k3 = 0). In this case, the marginal stability curve reduces to the plane where
βck1 ,k3

= −0.01.

6.3.2. Spectral behaviour

In this section the analysis is restricted to the most unstable modes k3 = 0. The
frequency fk1 ,0 is still defined by (6.4) where, for the same reason as in § 6.2.2, the
contribution of the linear term Λ1

k1 ,0
can be neglected. As was discussed earlier, the

frequency can be approximated as

fk1 ,0 =
Im (Λ2

k1 ,0
)

2π
= Umk1, (6.6)

and similar results to those presented in § 6.2.2 are found.
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6.3.3. Global stability

In § 6.3.1, it was demonstrated that the trivial solution is linearly stable, i.e. whatever
the control parameter β, when the numerical integrations start with low-amplitude
initial conditions then the solutions of the dynamical system tend to the trivial
solution as t −→ +∞. This result was confirmed by a numerical bifurcation analysis
of the system under study (Cordier 1996). Using the bifurcation package AUTO94
developed by Doedel, Keller & Kernevez (1991), no other branch of the solution,
even unstable, was found to bifurcate from the trivial solution. Hence assuming (all
the numerical integrations that have been done confirm this assumption) that the
low-order dynamical system (4.1) could not exhibit an isolated branch then the long-
term evolution of the system is either the trivial solution or one which has unbounded
growth to infinity. If the cubic term of the low-order dynamical system was negative
the same argument as in Aubry et al. (1988) could be used to prove that the solutions
would converge to zero (the system would be called globally stable). Unfortunately,
contrary to the original study of Aubry et al. (1988), this is not the case here. The
global stability of the system is not assured and some initial conditions could lead the
solution to a diverge to infinity. Note that at this point it has not been shown that
the system is globally stable, nor the opposite. However, since some initial conditions
have been found to cause unbounded growth, it can be concluded that the basin of
attraction of the trivial solution does not cover the space of all the initial conditions.

6.4. Conclusion

When the no-feedback relationship is used to close the dynamical equations, qualita-
tive linear stability behaviour comparable to that reported by Michalke (1964) was
obtained. However, the cubic terms are zero, allowing no feedback from the turbu-
lence to the mean velocity. Thus for this closure, the growth of the perturbations does
not reduce the slope of the mean velocity profile as was the case in the original study
of Aubry et al. (1988).

On the other hand, the feedback relationship closure equation with k1C = k3C = 0
yields results that either converge to the trivial solution (linearly stable) or grow
unbounded to infinity leading to an unphysical behaviour. In this specific case, even
though our system is not globally stable, the cubic terms are non-zero, allowing some
feedback from the turbulence to the mean velocity. When k1C 6= 0 and/or k3C 6= 0,
the linear term Λ2

k1 ,k3
is no longer purely imaginary (see (A 2)) and linearly unstable

modes (k1, k3) could appear for the trivial solution.
The considerations mentioned above show the justification for the filter technique

(with k1C 6= 0 and/or k3C 6= 0) to obtain behaviour compatible with linear stability
theory results and to allow for feedback from the turbulence to the mean velocity.

7. Solution for truncations with k3 = 0

Simulations of (4.1) using both the no-feedback relationship and the filter technique
for k3 = 0 are presented in this section. Two truncations were performed. The first,
detailed in this paper, involved seven streamwise wavenumbers and one POD mode.
In the second truncation, the system was reduced to include only five streamwise
wavenumbers and one POD mode while the domain L1 remained the same. This
second truncation was studied in Ukeiley (1995) and will not be presented here. The
five-mode system has very similar dynamics to the seven-mode system presented here.
This is important since the truncations which involve non-zero spanwise wavenumbers
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(k1, k3) ak1 ,k3
(t = 0)

(10, 0) 7.60000 10−03

(20, 0) 1.13771 10−02

(30, 0) 1.72755 10−02

(40, 0) 2.06431 10−02

(50, 0) 1.72524 10−02

(60, 0) 8.79664 10−03

(70, 0) 5.00210 10−03

Table 1. Wavenumber pairs and initial conditions for the seven-mode model.
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Figure 7. Mean streamwise velocity for seven-mode no-feedback simulations.

presented in § 8 only include five streamwise wavenumbers. This helps keep the system
relatively small as non-zero spanwise wavenumbers are added to the system.

The seven-mode model described here was developed to provide some insight
into the use of the filter technique for a small system before expanding to larger
systems which include spanwise modes. It is also a useful two-dimensional limit
(in wavenumber space) for comparisons to the simulations which include non-zero
spanwise wavenumbers.

7.1. Seven-mode model, no-feedback

In this truncation with no non-zero spanwise wavenumbers included (k3 = 0 only), the
streamwise spacing is 10× δk1 exp. The streamwise wavenumbers are the modes k1 =
10, 20, 30, 40, 50, 60, 70. Table 1 shows the initial conditions used for the simulation.

Note that the mean streamwise velocity used in (4.1) is not the measured quantity,
but rather that calculated from (3.5). For the particular truncation studied here the
integration in k1 runs from 10 to 70. Figure 7 shows the mean velocity profile used
for these simulations. In this figure and the ones to follow, x2/δω will be denoted by
y+. When comparing the profile in figure 7 to the measured values (see Delville et al.
1999), it is obvious that the convection velocity is preserved; however, the magnitudes
on the low- and high-speed sides are significantly larger and smaller, respectively.
This scales the production term, since it is dependent on the gradient of the mean
streamwise velocity.
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(k1, k3) (10, 0) (20, 0) (30, 0) (40, 0) (50, 0) (60, 0) (70, 0)

Frequency (Hz) 98.9 196.6 294.4 392.0 489.6 587.6 685.1

Table 2. Fundamental frequency for wavenumber pairs in the seven-mode system.

7.2. Dynamics as a function of α

Before discussing the dependence of the modelled POD expansion coefficients on α
we will consider behaviour that occurs for all values of α examined. There is an
underlying periodic (sinusoidal) behaviour that exists for all modes in the truncation.
The frequencies of this behaviour depend on the streamwise wavenumber and are
shown in table 2.

This periodic behaviour is always buried in the time traces of the coefficients, at
some scale, regardless of what larger-amplitude events may be in the time series. The
frequency increases with larger values of k1. Since frequency is mapped to streamwise
wavenumber through Taylor’s Hypothesis, this seems intuitively correct. The values
of the frequency obtained from the simulations for each streamwise wavenumber,
as tabulated in table 2, vary by less than 0.5% from the frequencies used in the
application of Taylor’s Hypothesis.

Other complex behaviour, which will be discussed in further detail later in this
section, sits on top of the underlying periodicities. Rajaee et al. (1994) obtained
similar behaviour in a forced plane mixing layer where the results showed their
coefficients exhibiting a complex behaviour on top of underlying periodicities.

The other behaviour that is observed regardless of the value of α is that the time-
dependent POD expansion coefficient associated with mode (20, 0) appears to lead
the temporal evolution, i.e. the coefficient has a larger magnitude and tends to be the
first to increase or decrease as a function of time (see figure 8). This is consistent with
the results discussed in § 6 where this mode was found to be the most unstable from
the linear analysis. It is interesting to note that these results are also in agreement
with the work done by Michalke (1964) using a hyperbolic tangent profile mixing
layer. It is also interesting to note that this streamwise wavenumber is associated
with energy in the centre of the mixing layer (see Delville et al. 1999). This behaviour
is also similar to the results of Metcalfe et al. (1987), where it was postulated that
disturbances from the centre of the mixing layer drive the instabilities that cause the
flow to exhibit three-dimensionality.

An interesting inconsistency between this dominance of the coefficient associated
with mode (20, 0) and the initial conditions used needs to be noted. As table 1 shows,
the initial conditions associated with coefficients (30, 0), (40, 0), and (50, 0) have greater
amplitude than the coefficient associated with (20, 0) (note that the initial conditions
are obtained directly from the experimental eigenvalues). The results of the seven-
mode simulation however, do not show this, and specifically, the modelled POD
coefficients for modes (40, 0) and (50, 0) decay to zero while the (20, 0) coefficient
remains finite. This is due to the lack of non-zero spanwise modes in the truncation.
The two-dimensional (k3 = 0 only) simulations do not allow for correct energy transfer
from (20, 0) to the higher modes. In the three-dimensional (k3 non zero) simulations
presented in § 8, the modelled POD expansion coefficients associated with modes
(40, 0) and (50, 0) do not decay to zero in general and their RMS time-averaged
amplitudes are of the same order as that of the (20, 0) coefficient.
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Value of α Behaviour

α < 1.55 All modes grow unbounded to infinity
1.55 < α < 1.75 Complex behaviour in full space
1.8 < α < 2.0 Intermittent/complex periodic behaviour for all modes

2.05 < α < 2.45 Periodic behaviour
α > 2.5 Trivial solution

Table 3. Description of dynamics for seven-mode no-feedback model.

Table 3 outlines the typical dynamic behaviour for the seven-mode system at
different values of the bifurcation parameter α. For values of α less than 1.55 the
system is unstable and the solutions grow to infinity. In this range of α, the term Λ2

linked to production grows at a rate which the dissipation term Λ1 cannot overcome.
This suggests that some feedback is necessary. As will be seen in § 7.6 feedback
eliminates this problem. For α > 2.5, the behaviour is the opposite, i.e. the global
attractor for the system is a trivial solution. This means that all the modelled POD
expansion coefficients decay to zero. Most of the coefficients decay at a similar rate
except for the (20, 0) coefficient which takes substantially longer to decay.

For α in the range of 2.05 < α < 2.45 the modelled POD expansion coefficients
exhibit periodic behaviour. The time histories (0.4 s in total length) of the real and
imaginary parts of the modelled coefficients are displayed in figure 8 for α = 2.2.
The results are typical of the behaviour of the system in this range of α. These
time traces can be described as two sinusoids superimposed on each other. The first
corresponds to an underlying streamwise-wavenumber-dependent frequency, while the
second varies with α for all modes. Increasing α decreases the amplitude associated
with the second frequency. As discussed earlier, the (20, 0) coefficient always triggers
the secondary frequency as it transfers energy to the higher modes. Also as mentioned
earlier, for streamwise wavenumbers greater than 30, the amplitude of the oscillations
is small, generally an order of magnitude less than the initial condition, while for
streamwise wavenumbers less than 30, the amplitude of the modelled POD expansion
coefficients tends to be of the same order as the initial conditions.

For 1.8 < α < 2.0 the system exhibits intermittent periodic behaviour. The solu-
tions have a complex secondary periodic behaviour superimposed on the underlying
periodicities. The modelled POD expansion coefficients intermittently go through
bifurcations in time where they cycle between having and not having secondary pe-
riodicities. The coefficients from modes (10, 0), (40, 0) and (60, 0) exhibit behaviour
which is indicative of two simple sinusoids while the other modes contain two peri-
odicities with more complex behaviour.

For 1.55 < α < 1.75 all the modelled coefficients exhibit complex behaviour. The
coefficients have oscillations with amplitude on the order of the initial conditions
which then grow to larger amplitudes and eventually appear chaotic. The larger the
value of α, the longer it takes the coefficients to exhibit large-amplitude behaviour.
The large amplitudes observed are of O(1) which is significantly greater than the
initial conditions shown in table 1. This suggests two possibilities; (i) that α is too
small and not able to remove enough energy from the system and (ii) there is too
much production and some feedback would make sense. In § 7.6 we will see, by
using the filter to lower production and include feedback, that the amplitudes of the
modelled POD expansion coefficients more closely mimic the initial conditions.
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Figure 8. ak1 ,0(t) time histories of real and imaginary parts of the modelled POD coefficients at
α = 2.2 for the seven-mode model.

7.3. Reconstructed velocity field

In this section, the modelled POD expansion coefficients from the seven-mode trun-
cation are used with the POD eigenfunctions to reconstruct a low-dimensional instan-
taneous velocity field. This velocity is obtained by using the inverse Fourier transform
of (2.4). For the k3 = 0 simulations, u3 is zero (recall from § 5.1 that Φ(1)

3,k1 ,k3=0 = 0) and
as a result, only reconstruction in the (x, y)-plane is possible.

Reconstruction from two values of α (2.2 and 1.85) are shown here. In the plots
(figures 9 and 10), the flow goes from left to right and the time increment between
snapshots is 4.0 × 10−04 s. This is five times the minimal resolved time step. The
dimensions of the window are 345 mm in the x1-direction and 66 mm in the x2-
direction. The figures are plotted in a frame of reference moving at the convection
velocity Uc. Therefore, the velocity plotted is

u(x2) +U(x2)−Uc

where U(x2) is the mean streamwise velocity calculated for the particular truncation
(see figure 7).
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Figure 9. Velocity vector plots for α = 2.2.

Figure 9 displays the velocity vector plots for α = 2.2. The simulations yielded
essentially periodic solutions. In the ‘pseudo’ real space plotted here, the periodicity
is represented by what appear to be spanwise aligned vortices passing through the
window. The structures pass through the window at evenly spaced intervals without
interacting with each other. This type of solution is consistent with the results of
Metcalfe et al. (1987) who observed roll-up without pairing in the absence of sub-
harmonic excitation. These results are also similar to those of Rajaee et al. (1994)
where the mixing layer was forced and periodic solutions with structures being
convected through the resolved window were found. The average length of these
structures, in the x1-direction, is about 215 mm and in the x2-direction they have a
scale of order the vorticity thickness.

Figure 10 shows the velocity vector plots for α = 1.85. This velocity field exhibits
more active behaviour than that for α = 2.2. Similar structures to those seen in
the velocity field for α = 2.2 can be observed passing through the windows along
with other events. Note one major event observed in the first window (t = 4 s). This
structure is much longer in the streamwise direction and appears to have two cores.
This is how a pairing event would appear from a velocity vector plot, suggesting
that even with such a simple model the initial signature of the pairing event is being
captured. This organization however does not have the energy to wrap around as
would be truly indicative of a pairing event and it appears that three-dimensional
simulations are necessary to capture this type of behaviour.
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Figure 10. Velocity vector plots for α = 1.85.

7.4. Reconstructed energy profiles

Once the velocity fields have been reconstructed, the kinetic energy profiles can also be
reconstructed by averaging the time series data. These profiles can also be calculated
directly from the first POD modes of the experimental data.

We will use the following equations to obtain the contribution of the first POD
mode to the various components of the kinetic energy from both the modelled POD
expansion coefficients and the experimental data:

u′iu′j
(1)

(x2) =

∫ ∫ +∞

−∞
Ψ

(1)
ij (x2; k1, k3) dk1dk3 (7.1a)

=

∫ ∫ +∞

−∞
λ

(1)
k1 ,k3

Φ
(1)
i,k1 ,k3

Φ
(1)∗
j,k1 ,k3

dk1dk3. (7.1b)

When the above integrals are performed using as input the experimental data they
only contain contributions from the wavenumbers included in the model truncation
(i.e. the filtered field). This allows an appropriate comparison between model and
experiment.

Figure 11 is a plot of the various components of the turbulent kinetic energy profiles
computed from measured data which only include contributions from the modes kept
in the seven-mode model. The integral in wavenumber space is performed from
k1 = 0 to 70 × δk1 exp for k3 = 0. In this plot one can see that the kinetic energy
from v is dominant. This is consistent with the discussion on the spectral tensor
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Figure 12. Turbulent kinetic energy profiles (α = 2.2).

in Delville et al. (1999) where it was shown that the energy associated with v is
dominant at k3 = 0 while the energy associated with u is more broad band and
spread out over several values of k3. This figure shows a clear limitation of the
seven-mode model and the modes kept. The filtered experimental field does not have
the proper anisotropy given the severe truncation (especially the lack of non-zero
spanwise wavenumbers).

Figures 12 to 14 are plots of the kinetic energy profiles for α = 2.2, 1.85 and
1.7, respectively. All of these plots show the streamwise component of the Reynolds
stress being dominant with an x2-distribution similar to the filtered measured value
(figure 11) but at substantially less amplitude (the closest in amplitude being the
α = 1.75 case). The modelled and filtered measured v-velocities show similar x2-
distributions. However, the v-component of the Reynolds stress from the model is
substantially smaller in amplitude than the filtered measured results. It is so small
that the filtered measured anisotropy (which is not correct) is totally different from
that from the model. What is interesting is that the model results have an anisotropy
similar to the unfiltered measured data (see figure 12, Delville et al. 1999). The model
uv-profiles are similar in shape to the filtered measured values and have an amplitude
approximately one-third of the streamwise kinetic energy profiles. This is also in good
agreement with the unfiltered measured data of Delville et al. (1999).
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Figure 13. Turbulent kinetic energy profiles (α = 1.85).
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Figure 14. Turbulent kinetic energy profiles (α = 1.7).

The swapping of dominance by the u-profile and the v-profile between the model
and filtered measured results occurs because the POD expansion coefficients for the
first two modes from the simulations, a10,0 and a20,0, are dominant in amplitude. As
was discussed earlier, this is the wrong distribution when compared to the initial
conditions. It was shown in the discussion of the spectra in Delville et al. (1999) that
streamwise wavenumbers less than 5.8 m−1 are associated with u-energy at the centre
of the mixing layer. When calculating the profiles in figures 12 to 14 the two first
modes become the dominant terms in the integration over streamwise wavenumber,
thus making the u-energy profile dominant. The improper (when compared to initial
conditions) energy distribution of the model results in an anisotropy consistent with
the unfiltered experimental data. These results clearly indicate there are inconsistencies
between the model and filtered experiments. This suggests that including non-zero
spanwise wavenumbers in the models for the POD expansion coefficients is critical
for capturing both the proper initial conditions and the proper anisotropy.

7.5. Spectra of reconstructed velocity

Figures 15 and 16 display autospectra, calculated from the reconstructed velocities
discussed above, for the u-component and the v-component of velocity, respectively.
In these plots the y-axis has units of m2 s2 Hz−1 while the x-axis is frequency. Only the
spectra from half of the mixing layer are included here because the upper and lower
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Figure 15. Autospectra of u1-component for α = 1.85.

halves demonstrated the same characteristics consistent with the measured spectra
presented in Delville et al. (1999). Only spectra for α = 1.85 are shown because the
behaviour described below is representative of results for α around this range.

In figure 15, the x2-distribution of energy that was discussed in the experimental
work on spectra (see Delville et al. 1999) is seen here as well. For the outer part of
the mixing layer, x2/δω = −0.75 to −1.178, the energy distribution is similar to that
for the v-component and contains information near the dominant Strouhal number.
In the centre of the mixing layer, the energy is contained at lower frequencies.

For the v-component of velocity (figure 16), a similar energy distribution in fre-
quency is obtained regardless of the x2-location but, as expected, the amplitudes reach
a maximum near the centre of the mixing layer. The frequencies observed from the
model correspond closely to the experimentally observed values.

In summary, the behaviour described here for the x2-distribution of the spectra
mimics well the experimental behaviour presented in Delville et al. (1999). Even with
the problems of the model discussed earlier (improper wavenumber distributions and
anisotropy) it is very encouraging that our severely truncated model has the correct
temporal trends as seen in the frequency spectra.

7.6. Seven-mode model with feedback via filter

The results of the seven-mode model without feedback for very small α indicate that
there is a need to control the production and provide for feedback between the mean
flow and the modelled coefficients. In this section, the solution of (4.1), written for
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Figure 16. Autospectra of u2-component for α = 1.85.

the filter case, will be discussed for the seven-mode system retained in § 7.1. With
the method of closure of (3.6), the mean velocity is split into a steady part that is
held constant for all time and a time-dependent part that manifests itself as a cubic
term in the dynamical equations. The introduction of this filtering technique discussed
in § 3 allows time-dependent interaction between the coherent structures and mean
velocities. This technique will also allow the scaling of the production term. The
need for this will become even more apparent when truncations involving k3 6= 0 are
discussed in § 8.

Figure 17 shows U1F estimated from (3.5) for different values of k1C and k3C . For
values of k1C = 50 or 60, the mean velocity profiles are essentially the same as the
one used in the no-feedback case (k1C = 70 and k3C = 0 in figure 17). As one should
expect, the lower the value of k1C , the smaller the mean velocity gradient.

7.6.1. Filter cutoff = (50, 0) or (40, 0)

Since the simulations of the no-feedback model yielded reasonable results except
at very small values of α, a natural first step was to set k1C = 50. This allows
some contribution to the cubic term without much loss in mean streamwise velocity
gradient. Upon further examination of figure 17, it is clear that the profiles obtained
for U1F using k1C = 40 or k1C = 50 are very similar, and in fact when these two
values of k1C were used to calculate the mean profile similar dynamics were found for
the modelled POD expansion coefficients. Since the filtered mean streamwise velocity
profile is similar in this case to the unfiltered one, the production terms in (4.1) are
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of the same order of magnitude. In this case however the introduction of the cubic
term provides feedback between the modelled coefficients and the mean streamwise
velocity.

Initial results from the numerical simulations showed that the introduction of
the cubic term had a stabilizing effect on the system†. For values of α > 1.55 the
behaviour is the same as for the no-feedback case and is still characterized by the
descriptions in table 3. With feedback, however, for values of α < 1.55 the system no
longer exhibits the unbounded growth mentioned in the discussion of the no-feedback
case. For values of α in this range the system now exhibits a complex behaviour in
full space on top of the underlying periodicities, much the same as in the region
1.8 > α > 1.55 for the no-feedback case. For example, when α = 0.5, the complex
behaviour is similar to that of the no-feedback simulations although the mean-square
amplitudes of the coefficients have increased even more. These characteristics were
observed whether k1C = 50 or k1C = 40.

7.6.2. Other values for cutoff wavenumber

For values of k1C smaller than 40, the system took on different characteristics, which
indicates the importance of having the correct level of production. Comparative results
for the solutions with k1C = 20 and k1C = 30 exhibit similar dynamical behaviour.
The systems yielded trivial solutions except for very small values of α. For these
small values, the dynamics were very similar to the complex behaviour discussed for
the no-feedback model although the mean-square amplitudes of the coefficients were
more reasonable when compared to the experimental values. As one would expect for
k1C less than 20, the system more closely mimics the limiting case examined in § 6. As
the production term becomes smaller and smaller, the solutions decay to zero. The
reason for this is again the lack of linear growth as discussed in § 6.

8. Truncations for k3 6= 0

The modelled POD expansion coefficients obtained from the k3 = 0 simulations
give temporal and spectral distributions which are reasonable but are unable to
capture the proper spatial wavenumber spectral distributions and velocity component

† Recall that in the context of dynamical system theory, the cubic terms may have stabilizing
effects when their contribution is the opposite of the linear term contribution.
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(k1, k3) (10, 0) (20, 0) (30, 0) (40, 0) (50, 0)
ak1 ,k3

(t = 0) 7.60000 10−03 1.13771 10−02 1.72755 10−02 2.06431 10−02 1.72524 10−02

(k1, k3) (0, 1) (10, 1) (20, 1) (30, 1) (40, 1) (50, 1)
ak1 ,k3

(t = 0) 6.80040 10−03 7.53926 10−03 1.20971 10−02 1.96608 10−02 2.42085 10−02 2.07484 10−02

(k1, k3) (0, 2) (10, 2) (20, 2) (30, 2) (40, 2) (50, 2)
ak1 ,k3

(t = 0) 7.10371 10−03 7.09660 10−03 9.41142 10−03 1.26013 10−02 1.43849 10−02 1.18079 10−02

(k1, k3) (0, 3) (10, 3) (20, 3) (30, 3) (40, 3) (50, 3)
ak1 ,k3

(t = 0) 6.74773 10−03 6.58099 10−03 8.20589 10−03 9.57029 10−03 1.02790 10−02 8.29034 10−03

Table 4. Wavenumber pairs and initial conditions for the 38-mode model.
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Figure 18. Mean streamwise velocity profiles for 38-mode model, no-feedback case.

anisotropies. In an attempt to try and capture more realistic behaviour for the latter
two, simulations of the modelled POD expansion coefficients, which include non-zero
spanwise wavenumbers, were performed. Results from a 38-mode model are described
in this section both with and without filtered equations (i.e. both with and without
feedback).

The specific truncation studied here is an extension of a five-mode model (k1 =
10, 20, 30, 40, 50; k3 = 0) discussed in Ukeiley (1995). This system exhibited essentially
the same dynamics as the seven-mode system described in § 7. Here we use the five-
mode system because it allows inclusion of non-zero spanwise wavenumbers without
the system becoming too large. Non-zero spanwise wavenumbers added to the five-
mode system include k3 = 1, 2 and 3. The wavenumber pairs and initial conditions
used for the 38-mode simulations are tabulated in table 4.

8.1. No-feedback relationship

Figure 18 displays the no-feedback mean profile used for the simulations discussed
in this section. It has a larger gradient than those used for the k3 = 0 simulations, as
can be seen by comparing with the mean profiles shown in figure 17. This provides
more production resulting in additional energy for the system.

8.1.1. Dynamics as a function of α, no feedback

In the next section we present time series for the case with feedback at one value
of α. Here we only summarize the results for the no-feedback model. The results from
the simulations including some feedback are more realistic as will be discussed later.
Table 5 summarizes the dynamics of the system of equations as a function of α for the
38-mode model with no feedback. The values of α where interesting dynamics occur
are much higher than with the seven-mode model. However, with the 38-mode model,
the same underlying frequencies, as a function of k1 (see table 2), were observed
regardless of the value of k3. This model now includes three modes involving k1 = 0.
For these k1 = 0 modes there is no underlying frequency and the solutions are more
intermittent than periodic. As with the seven-mode no-feedback simulations there is
a value for α below which the solutions to the equations grow unbounded. For the
38-mode simulations this value was α = 36.5. With α greater than 65 the viscous
dissipation term is dominant, and a trivial solution is the global attractor.

When 36.5 > α > 39, the system switched between complex behaviour and un-
bounded growth with small changes in α. When the solutions did not grow unbounded,
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Value of α Behaviour

α < 36.5 All modes grow unbounded to infinity
36.5 < α < 39 Unstable solutions switching between

unbounded growth and complex behaviour
with low-order amplitude coefficients

39 < α < 45.5 Complex behaviour in full space
45.5 < α < 47 Complex behaviour for k3 = 0

Intermittent behaviour for k3 6= 0
47 < α < 52.6 System blows up

52.6 < α < 57 Complex behaviour for k3 = 0
Trivial solution for k3 6= 0

57 < α < 65 Intermittent/periodic solution k3 = 0
Trivial solution for k3 6= 0

α > 65 Trivial solution for all space

Table 5. Description of dynamics for the 38-mode no-feedback model.

all the modes exhibited a complex ‘random’ solution over the underlying periodicity.
The behaviour of the system for α between 39 and 45.5 is similar to the bounded
results for 36.5 > α > 39. The solutions for the k3 = 0 POD expansion coefficients
exhibit very similar dynamics to one another. However, the solutions for k3 6= 0 switch
between behaviour similar to that for k3 = 0 and an intermittent type of behaviour
with the amplitude of the coefficients going to zero between events. As α approaches
47 the amplitude of the coefficients for k3 = 0 grows until in the region of α between
47 and 52.6 they drive the system unstable.

The dynamics for α between 52.6 and 65 follow trends similar to the seven-mode
model for α between 2.05 and 2.45, especially in the observed intermittent behaviour.
For all the modes with k3 6= 0, a trivial solution was obtained, while for k3 = 0,
all modes in k1 exhibited active dynamics. These modes evolved through periodic
solutions with the underlying periodicity remaining constant and the secondary pe-
riods becoming larger and larger. As with the seven-mode simulations, mode (20, 0)
is controlling the dynamical behaviour of the system. This mode grows in ampli-
tude and triggers mode (40, 0). These two modes distribute their energy to the rest
of the system. At these values of α, the system is being damped so much that no
variations in the streamwise direction can arise. However, this is the only range
of α that has realistic amplitudes for the modelled POD coefficients. At the lower
values of α where the solutions show three-dimensional behaviour the mean-square
amplitudes of the modelled coefficients are much too large. This suggests that in the
no-feedback case too much production is being provided for the system and that
some feedback is necessary to obtain coefficient amplitudes of the right order while
retaining three-dimensional dynamics.

8.1.2. Representation in physical space, no-feedback

Figures 19 and 20 display the individual components of the turbulent kinetic energy
profiles for α = 39 and 45, respectively. As with the seven-mode dynamical system,
these systems exhibit distributions in the x2-direction similar to the experimental
distributions. For both cases the streamwise component of the turbulent kinetic
energy is much higher than expected. For α = 45 the reconstructions of the streamwise
component of the turbulent kinetic energy from the simulations are even greater than
the first POD mode reconstructed experimental values which include contributions
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Figure 19. Turbulent kinetic energy profiles for α = 39 (38-mode model).
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Figure 20. Turbulent kinetic energy profiles for α = 45 (38-mode model).

from all wavenumbers, not just those used in the simulations. The amplitude of the
Reynolds stress were always found to be significantly larger than those of the filtered
experimental values as well.

These unrealisticly high amplitudes are a direct result of the high amplitudes of the
modelled POD expansion coefficients. The mean streamwise velocity profile shown
in figure 18 causes too much production and the system cannot obtain a three-
dimensional solution with realistic values for the coefficients. This shows why there is
a need to scale the linear growth term and provide some feedback.

8.2. 38-mode model filter relationship

The results discussed for the 38-mode no-feedback model suggest that using the filter
technique would prove useful in scaling the production term and obtaining coefficients
with a more realistic amplitude. Several values of filter setting (k1C; k3C) have been
evaluated in this study. For values of the filter that drasticly reduced the mean
streamwise velocity gradient, the system exhibited a behaviour where the coefficients
were always decreasing (for example in Ukeiley 1995 simulations were presented
where all of the mean velocity was modelled in the feedback term). For values where
the filter did not alter the mean streamwise velocity gradient significantly, the system
behaved similarly to the no-feedback results discussed in the previous section, as was
expected. Finally, a setting of k1C = 40 and k3C = 2 was selected because at this
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Figure 21. Mean streamwise velocity profiles for filter setting of (40, 2) (38-mode model).

setting the proper amplitude for the modelled POD expansion coefficients along with
three-dimensional solutions were obtained.

8.2.1. Filter cutoff (40, 2)

Figure 21 shows a profile of U1F calculated with a filter setting of (40, 2). It has a
noticeably smaller gradient than that of the unfiltered case (compare with figure 18)
resulting in a reduction of the production term in (4.1). The smaller production
term should limit the energy input to the model resulting in coefficients with smaller
amplitudes.

The dynamics exhibited as a function of α are simpler than for the no-feedback case
described in the previous section. For α < 35 the system is unstable and the solutions
grow to infinity. For values of α > 39 the system has the same basic behaviour as in
the 38-mode no-feedback simulations. There is however a range, 39 > α > 35, where
the system has active dynamics for all modes (i.e. three-dimensional) with realistic
POD coefficient amplitudes. Hence we focus our attention on the modelled POD
expansion coefficients obtained within this range of α.

Figure 22 displays the time traces for α = 36.65. Only time histories of the
coefficients for positive values of k1 are shown since the values for negative k1

exhibited similar dynamics to their positive counterparts. In this figure, all modes
exhibit the underlying periodicities, with a more complex second periodic behaviour
sitting on top.

Figure 23 displays the turbulent kinetic energy profiles for α = 36.65. The behaviour
in the x2-direction is the same as has been observed in the no-feedback case; however
the amplitudes are significantly smaller, being now of the same order as those obtained
from integrating the measured spectra over the first POD mode contribution from the
wavenumbers kept in the model. The ratio of the mean-square u1-component to the
mean-square u2-component is now comparable to original experimental values shown
in Delville et al. (1999). It should be pointed that with the inclusion of non-zero
spanwise wavenumbers, integrating the experimental spectra over the model domain
yielded anisotropy ratios close to the measured experimental values.

Figures 24 and 25 plot the u1- and u2-autospectra for the case discussed above. The
axes on these plots have the same units as for figures 15 and 16. The u3-component is
not shown because its magnitude was quite small as demonstrated by the amplitude
of the u3-component of the turbulent kinetic energy shown in figure 23. As with the
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(t) α = 36.65 for a filter setting of (40, 2) (38-mode system), short time
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Figure 23. Turbulent kinetic energy profiles for α = 36.65 with a cutoff filter of (40, 2)
(38-mode model).
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Figure 24. Autospectra of u1-component for α = 36.65.

seven-mode system (§ 7.5), only values from the bottom half of the mixing layer are
shown due to the symmetric nature of the flow.

The frequency content of the u2-component does not change as a function of the x2-
location, and the amplitude of the spectral peaks gets larger near the centre of the mix-
ing layer. The u1-component has a shift in the frequency between the inner and outer
parts of the mixing layer: the outer region has the same frequency content as the u2-
component and the inner part has a dominant frequency of approximately one-half the
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Figure 25. Autospectra of u2-component for α = 36.65.

outer. The spectral peaks are now noticeably broader than those shown in figures 15
and 16 because more modes have been included in the system, each with its own spec-
tral content. These results are qualitatively similar to the measured spectra as shown
in Delville et al. (1999) and to the seven-mode system simulations described earlier.

Figures 26 and 27 show plots, at t = 3.6 s, of the total vorticity (|ω1|+ |ω2|+ |ω3|) for
the (x1, x2)- and (x2, x3)-planes, respectively. In figure 26, a slice of the flow at x3 = 0 is
displayed: several spanwise vortices can be seen, e.g. the two contour peaks at locations
B and F along with the two in the other half of the domain. Figure 27 displays the
(x2, x3)-plane contours of the vorticity at the locations marked on figure 26, and shows
clear evidence of streamwise aligned vortices in x1 between the two spanwise vortices.
These are represented by the contour lines at locations D and E which lie between the
spanwise vortex centres at locations B and F. This result is in good agreement with
previous studies of the mixing layer (Metcalfe et al. 1987), which show strong evidence
that spanwise vortex tubes are connected by streamwise aligned vorticity. The average
ratio of the spanwise distance between structures to that of the streamwise structures
is approximately 0.7 for the simulations presented here. This is in good agreement
with the results of Pierrehumbert & Widnall (1982) where the most unstable spanwise
wavelength was shown to be approximately 2/3 of the streamwise wavelength.

9. Conclusions
In this work, a low-order dynamical system model has been presented which is valid

for the asymptotic region of a plane turbulent mixing layer. The ordinary differential
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Figure 26. Vorticity α = 36.65 for a filter setting of (40, 2) (38-mode system), (x1, x2)-plane.
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Figure 27. Vorticity α = 36.65 for a filter setting of (40, 2) (38-mode system), (x2, x3)-plane.

equations of the reduced-order model are derived from a Galerkin projection of
the Navier–Stokes equations and the POD eigenfunctions reported in Delville et
al. (1999). The low-dimensional nature of the model is achieved by only keeping
equations for selected streamwise/spanwise wavenumbers and the first POD mode.
Specifically, two sets of equations, each with a different means of representing the
mean streamwise velocity, have been presented for two different truncations. In
the first mean closure, termed no feedback, a Boussinesq approximation was used
to calculate the contribution from the modes kept in the truncation to the mean
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streamwise velocity. The mean velocity profile was then held constant for all time
causing a fixed level of production. The other set of equations that was studied,
termed feedback, allowed both linear growth and feedback between the turbulence
and the mean. In this method, a cutoff wavenumber was chosen and wavenumbers
greater than this value were allowed to vary with time while the contribution from
wavenumbers less than this value contribute in a non-time-dependent manner as with
the first set of equations.

The first truncation involved seven modes evenly spaced in k1 for k3 = 0. Regardless
of the value of the bifurcation parameter this system always exhibited an underlying
periodicity with the streamwise wavenumbers kept in the truncation. The under-
lying periodicity, although sometimes embedded in a more complex behaviour, is
representative of the spanwise vortex tubes which are known to be a periodic event.
Reconstructions of the instantaneous velocity field showed further evidence that the
seven-mode model represented the periodic spanwise vortex organization well. Ex-
amination of the turbulent energy profiles showed that the anisotropy matched that
of the experiment, not that of the small set of modes kept in the model. The second
mean closure, i.e. the filter technique, was found to have a stabilizing effect on the
simulations. For filter settings which did not significantly alter the mean streamwise
velocity gradient the introduction of the cubic term served to stabilize the solutions.
The system did not go unstable and exhibit unbounded growth regardless of the value
of α.

A truncation which involved spanwise wavenumbers not equal to zero was also
examined. Simulations for this truncation using the no-feedback mean closure over-
predicted the kinetic energy profiles due to the production term being to large.
Applying the filter technique had a pronounced effect by scaling of the mean stream-
wise velocity gradient. This in turn reduced the production term thus resulting in
magnitudes for the coefficients that were in good agreement with the experimentally
determined ones. With the reduced energy in the system the amplitudes of the recon-
structed mean-square velocity profiles were consistent with what one would expect
from the severely truncated system. Plots of the total vorticity showed strong evi-
dence of the known flow organizations. These plots showed spanwise vortex tubes
being connected by streamwise aligned vorticity. This type of structure is consistent
with what has been reported in many previous studies (see Metcalfe et al. 1987
for example). The fact that the system exhibits the correct essential physics makes
it a likely candidate in developing control strategies for the mixing layer such as
those proposed for the dynamical systems model of the near-wall region by Berkooz
(1992).
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Appendix A. General dynamical equations
A.1. No-feedback relationship

Λ
1(m)
k1 ,k3

= ν

[
−4π2(k2

1 + k2
3)δmn +

∫ L2

−L2

(
d2Φ

(m)
i,k1 ,k3

(x2)

dx2
2

)
Φ

(n)∗
i,k1 ,k3

(x2) dx2

]
. (A 1)



106 L. Ukeiley and others

Λ
2(m)
k1 ,k3

= −
(∫ L2

−L2

Φ
(m)
2,k1 ,k3

(x′2)
∂U1(x

′
2)

∂x2

Φ
(n)∗
1,k1 ,k3

(x′2) dx′2

+ (2πik1)

∫ L2

−L2

U1(x
′
2)Φ

(m)
i,k1 ,k3

(x′2)Φ
(n)∗
i,k1 ,k3

(x′2) dx′2

)
. (A 2)

Q
(p)(q)
k′1 ,k′3 ,k1 ,k3

= − (1− δk1 ,0δk3 ,0)

(L1L3)1/2

×
∫ L2

−L2

[
2πi(k1 − k′1)Φ(p)

1,k′1 ,k′3
(x2)Φ

(q)
i,k1−k′1 ,k3−k′3 (x2)

+ Φ
(p)
2,k′1 ,k′3

(x2)
d

dx2

Φ
(q)
i,k1−k′1 ,k3−k′3 (x2)

+ 2πi(k3 − k′3)Φ(p)
3,k′1 ,k′3

(x2)Φ
(q)
i,k1−k′1 ,k3−k′3 (x2)

]
Φ

(n)∗
i,k1 ,k3

(x2) dx2. (A 3)

A.2. Filter relationship
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Appendix B. Turbulent viscosity model
In Aubry et al. (1988) the assumption that small scales remove energy from larger

ones is written in the following form:

τSSij = −2νTS
LS
ij , (B 1)

denoting that the small-scale stress tensor is proportional to the strain rate tensor for
the modes resolved. In this equation, τSSij and SLSij are defined as

τSSij = ui
SSuj

SS
SS − uiSSujSS SS − 1

3
δij(uk

SSuk
SS
SS − ukSSukSS SS ), (B 2)

and

SLSij =
1

2

(
∂ui

LS

∂xj
+
∂uj

LS

∂xi

)
, (B 3)

where the notation ( )
LS

(large scale) corresponds to the summation over all the
modes and wavenumbers inferior or equal to the truncation point; the notation

( )
SS

corresponds to the small scales (summation over all the mode wavenumbers
larger than the truncation point). By observing that the energy decreases rapidly with
higher POD and streamwise/spanwise wavenumber modes (see the three-dimensional
eigenspectra represented in Delville et al. 1999), the assumption can be made that the
relevant scales are given by characteristic scales of the first neglected modes.
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With these conditions the turbulent viscosity can be defined as

νT =

∫
D
uSSi u

SS
i dx2(

D
∫
D
∂uSSi
∂xj

∂uSSi
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dx2

)1/2
. (B 4)

The integrals over x2 are used to eliminate the inhomogeneous direction since νT
should not be a function of this direction. In equation (B 4), the term

− 1
3
δij(uk

SSuk
SS
SS − ukSSukSS SS )

has been dropped because it can be combined with the pressure term which has been
dropped in this analysis (see § 3.3). This representation is simpler than that of Aubry
et al. (1988) since it was necessary in that study to keep the pressure term, but is the
same as that of Glauser et al. (1989).

Utilizing the relationships of (2.4) and (3.10), the following expression arises:
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where the sum
∑

k1 ,k3 ,n
corresponds only to the first neglected modes.
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